Environmental Resources Management

399 Boylston Street 6th Floor Boston, MA 02116 (617) 646-7800 (617) 267-6447 (fax)

26 March 2009 Reference: 0095922

Mr. Robert Schelmerdeine Wayland Meadows Development Inc. 2 Washington Street Foxboro, MA 02035

Re: Transmittal of Groundwater Analytical Data Former Raytheon Facility 430 Boston Post Road, Wayland, Massachusetts

Dear Mr. Schelmerdeine:

On behalf of Raytheon Company (Raytheon), Environmental Resources Management (ERM) is submitting the results of groundwater sample analyses from the Former Raytheon Facility located at 430 Boston Post Road in Wayland, Massachusetts (Site). The results are submitted pursuant to 310 CMR 40.1403(10) of the Massachusetts Contingency Plan (MCP).

ERM collected groundwater samples from two wells on portions of the Site within the boundaries of your property on 18 and 19 February 2009. The samples were analyzed for volatile organic compounds, total organic carbon, total phosphorus, dissolved iron and dissolved manganese, sulfate, nitrogen as nitrate, and dissolved ethane, ethene, and methane gases. Sample analyses were conducted by Alpha Analytical, Inc. of Westborough, Massachusetts and Microseeps, Inc. of Pittsburgh, Pennsylvania. This analytical data will be provided to the Massachusetts Department of Environmental Protection in the next required MCP submittal.

Raytheon has implemented the Public Involvement Process in accordance with MCP 310 CMR 40.1405. Documents pertaining to the Site can be found at the Board of Health, the Wayland Public Library Public Involvement Plan files, or at www.ermne.com (username = raytheon, password = wayland). Mr. Schelmerdeine Reference: 0095922 26 March 2009 Page 2 Environmental Resources Management

If you have any questions or comments, please contact the undersigned at (617) 646-7800 or Louis Burkhardt, Raytheon Company, at (978) 436-8238.

Sincerely,

CC:

John C. Drobinski, P.G., LSP Principal-in-Charge

FOR

Jason D. Flattery, P.E. *Project Manager*

enclosures: BWSC-123 – Notice of Environmental Sampling

Louis Burkhardt, Raytheon Company Ben Gould, CMG Environmental PIP Repositories

NOTICE OF ENVIRONMENTAL SAMPLING
As required by 310 CMR 40.1403(10) of the Massachusetts Contingency Plan

			DVV3C 123
			This Notice is Related to Release Tracking Number
			3 22408
A. The address of the disposal site related to	this Notice a	and Release Tracking N	lumber (provided above):
1. Street Address: 430 Boston Post Road			
City/Town: Wayland	Zip Code:	01778	
B. This notice is being provided to the followi	ng party:		
1. Name: Wayland Meadows Development Inc.			
2. Street Address: 2 Washington Street			
City/Town: Foxboro	Zip Code:	02035	
C. This notice is being given to inform its reci	pient (the p	arty listed in Section B):
✓ 1. That environmental sampling will be/ha	s been cond	lucted at property owned	by the recipient of this notice.
✓ 2. Of the results of environmental samplin	ig conducted	l at property owned by th	e recipient of this notice.
\checkmark 3. Check to indicate if the analytical result			checked, the analytical results from
the environmental sampling must be attact D. Location of the property where the environ			conducted:
1. Street Address: 430 Boston Post Road			
City/Town: Wayland	Zip Code:	01778	
2. MCP phase of work during which the sampling	will be/has b	peen conducted:	
☐ Immediate Response Action ☐ Release Abatement Measure	Phase	III Feasibility Evaluation IV Remedy Implementa V/Remedy Operation St	
Utility-related Abatement Measure Phase I Initial Site Investigation Phase II Comprehensive Site Assessment		Class C Operation, Mainte	
3. Description of property where sampling will be	/has been co	(specify) onducted:	
residential commerical 🛛 i	ndustrial	school/playground	Other(specify)
4. Description of the sampling locations and type	s (e.g., soil, g	groundwater) to the exte	
Collection of groundwater samples from	m existing	monitoring wells.	
E. Contact information related to the party pro Contact Name: Louis J. Burkhardt	viding this ı	notice:	
Street Address: 880 Technology Park Drive, MS	2-2124-01		
City/Town: Billerica	Zip Code:	01821	

Telephone: (978) 436-8238 Em	nail: I	louis_j	_burkhardt@raytheon.com
------------------------------	---------	---------	-------------------------

NOTICE OF ENVIRONMENTAL SAMPLING

As required by 310 CMR 40.1403(10) of the Massachusetts Contingency Plan

MASSACHUSETTS REGULATIONS THAT REQUIRE THIS NOTICE

This notice is being provided pursuant to the Massachusetts Contingency Plan and the notification requirement at 310 CMR 40.1403(10). The Massachusetts Contingency Plan is a state regulation that specifies requirements for parties who are taking actions to address releases of chemicals (oil or hazardous material) to the environment.

THE PERSON(S) PROVIDING THIS NOTICE

This notice has been sent to you by the party who is addressing a release of oil or hazardous material to the environment at the location listed in **Section A** on the reverse side of this form. (The regulations refer to the area where the oil or hazardous material is present as the "disposal site".)

PURPOSE OF THIS NOTICE

When environmental samples are taken as part of an investigation under the Massachusetts Contingency Plan at a property on behalf of someone other than the owner of the property, the regulations require that the property owner (listed in **Section B** on the reverse side of this form) be given notice of the environmental sampling. The regulations also require that the property owner subsequently receive the analytical results following the analysis of the environmental samples.

Section C on the reverse side of this form indicates the circumstance under which you are receiving this notice at this time. If you are receiving this notice to inform you of the analytical results following the analysis of the environmental samples, you should also have received, as an attachment, a copy of analytical results. These results should indicate the number and type(s) of samples (e.g., soil, groundwater) analyzed, any chemicals identified, and the measured concentrations of those chemicals.

Section D on the reverse side of this form identifies the property where the environmental sampling will be/has been conducted, provides a description of the sampling locations within the property, and indicates the phase of work under the Massachusetts Contingency Plan regulatory process during which the samples will be/were collected.

FOR MORE INFORMATION

Information about the general process for addressing releases of oil or hazardous material under the Massachusetts Contingency Plan and related public involvement opportunities may be found at <u>http://www.mass.gov/dep/cleanup/oview.htm</u>. For more information regarding this notice, you may contact the party listed in **Section E** on the reverse side of this form. Information about the disposal site identified in Section A is also available in files at the Massachusetts Department of Environmental Protection. See <u>http://mass.gov/dep/about/region/schedule.htm</u> if you would like to make an appointment to see these files. Please reference the **Release Tracking Number** listed in the upper right hand corner on the reverse side of this form when making file review appointments.

Client Name: ERM Contact: Jason Flattery Address: 399 Boyleston Street 6th Floor Boston, MA 02116 Page: Page 1 of 3 Lab Proj #: P0902232 Report Date: 03/03/09 Client Proj Name: Wayland Client Proj #: Wayland

Laboratory Results

Total pages in data package:

4

 Lab Sample #
 Client Sample ID

 P0902232-01
 MW-264M-20090218-01

 P0902232-02
 DEP-19M-20090219-0 1

Microseeps test results meet all the requirements of the NELAC standards or provide reasons and/or justification if they do not.

Approved By:	Lachel	Whitten	Date:	3/3/09	
Project Manager:	Rachel Whitby	J			

The analytical results reported here are reliable and usable to the precision expressed in this report. As required by some regulating authorities, a full discussion of the uncertainty in our analytical results can be obtained at our web site or through customer service. Unless otherwise specified, all results are reported on a wet weight basis.


As a valued client we would appreciate your comments on our service. Please call customer service at (412)826-5245 or email customerservice@microseeps.com.

Case Narrative:

220 William Pitt Way • Pittsburgh, PA 15238 • Tel 412-826-5245 • Fax 412-826-3433 website www.microseeps.com email info@microseeps.com

Page 2 of 3
20902232
03/03/09
Nayland
Nayland
>0)3/ Na

Sample Description MW-264M-20090218-01	<u>Matrix</u> Water	<u>Lab Sample</u> P0902232-0		Sampled Date/Time 18 Feb. 09 8:15	<u>Received</u> 23 Feb. 09 9:31				
Analyte(s)	Result	PQL	Units	Method #	Analysis Date	Ву			
<u>RiskAnalysis</u> N Ethane	<0.025	0.025	ug/L	AM20GAX	3/2/09	rw			
N Ethene	0.210	0.025	ug/L	AM20GAX	3/2/09	rw			
N Methane	7.700	0.100	ug/∟	AM20GAX	3/2/09	ſW			

Clie	nt Name: ERM	Page: Page 3 of 3
	Contact: Jason Flattery	Lab Proj #: P0902232
	Address: 399 Boyleston Street	Report Date: 03/03/09
	6th Floor	Client Proj Name: Wayland
-	Boston, MA 02116	Client Proj #: Wayland

Sample Description DEP-19M-20090219-01	<u>Matrix</u> Water	Lab Sample P0902232-0		Sampled Date/Time 19 Feb. 09 14:30	<u>Received</u> 23 Feb. 09 9:3	31
Analyte(s)	Result	PQL	Units	Method #	Analysis Date	By
<u>RiskAnalysis</u> N Ethane	0.029	0.025	ug/L	AM20GAX	3/2/09	rw
N Ethene N Methane	0.130 2.100	0.025 0.100	ug/L ug/L	AM20GAX AM20GAX	3/2/09 3/2/09	rw rw

I.			5		•	•									÷							instants instants
			hamar, Erest Cermica		- 8 														Time :	Time :	Time :	
8	co.		t @ t											i								
	6-34		Say.					Remarks										~	Date	Date	Date	
ן איי ש	[]	.: [0	arv		ç	. 9		Re											<u>- (</u>		n internet	
seep cont	2	Results t <u>o</u>	N N															.*	6		5.000	
Microseeps COC cont. #	Fax No. : (412) 826-3433	Ř	<u>احم</u> ا		<u> </u>	<u> </u>									 	 			. \			mitter
LŪ										* 21 1949					 •				pany	Ćompany	Company	PINK COPY : Submitter
~	0	2					:											,	Company	Çom	Com	< COP
R	PA15238	luest																				D IN
00		s Rec														 			$\left \right\rangle$	$\boldsymbol{\Sigma}$		
N - OF CUSTODY RECORD	- Pittsburgh	Parameters Requested																				
Z	ES D	Para																	A			<u>e</u>
10	ā																	-	Ad b	d by	d by	tory Fi
NS	NaV S		àu,	»Yið	, a	wsy	01 21	15 Mall	2	2									Received by	Received by	Received by	Labora
ē	Ë		1	्रे 			С Е	\$10g	N	<i>d</i>		- 1.1 1		*	··	 - نغیری ر	- *	4			+	YELLOW COPY : Laboratory File
Ľ	E E			. 1	Ì	1	Cooler lemp		-(140	1430				_		 			Time :	Time :	Time	
Ľ	NO			this	•		<u></u>			9 14					 				· · ·	1.00		
	8		M	(-)-(J	ξ		1	Date	2 livla	6016112									Date :	Date :	Date	J. A
Pg 1 2 5 CHAIN	Microseeps, Inc 220 William Pitt Way		Joston Ma	Fax #:207-267	Jason Flatton			pe	<u>~</u>	1												
Č	eps			9	Ē			ple Ty Vaporis						· .								N
- K	rose	:	- Flar	Fax #	SS .	Ne		Sample Type Water Vapor Solid	×	\times	,			-								Sample
N	N		5	.		<u>4</u> 10	-	5000											Company	Company	Company	hany
		_	far	00	150	Ma		Descri											Соп	Con	Con	Accor
Pa	10	FRM	I'Y	- Ž	È	S		Sample Description														λdoc
	Phone: (412) 826-5245	FT	399 Thilden St.	Darc - JHJ-LID	Bahaar Frust	The		ő														WHITE COPY : Accompany Samples
Microseeps Lab. Proj. #	2) 82			(la)	Bal	Ray			1-0	219-0												5
Micı Lab	9 4					ber :	ture :		4026	0640									: \c	: Ya	: Ya	
	Phon	-	ŝ		ger :	/Num	signa	Sample ID	-201C-1	2-W									hed	hed	hed	
		any.	ddres	с#;	Proj. Manager :	Name	ler's	Š	10-AICOYUC-WINTC-M	DEP-19M-20090219-0									Relinquished by	Relinquished by	Relinquished by :	æ
		Company	Co. Address :	Phone # :	Proj.	Proj. Name/Number: Ray them Way land	Sampler's signature :		-Cum	DEV			,	4					Relir	Reli	Reli	<u> </u>
-																						1

ANALYTICAL REPORT

Lab Number:	L0902334
Client:	ERM Consulting & Engineering, Inc.
	399 Boylston Street
	6th Floor
	Boston, MA 02116
ATTN:	Bahaar Frost
Project Name:	RAYTHEON WAYLAND
Project Number:	0095922
Report Date:	02/26/09

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:RAYTHEON WAYLANDProject Number:0095922

 Lab Number:
 L0902334

 Report Date:
 02/26/09

Alpha Sample ID L0902334-01

MW-264M-20090218-01

Client ID

Sample Location WAYLAND, MA

Project Name:RAYTHEON WAYLANDProject Number:0095922

Lab Number: L0902334 Report Date: 02/26/09

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An affirmative response to questions A, B, C & D is required for "Presumptive Certainty" status									
A	Were all samples received by the laboratory in a condition consistent with those described on their Chain-of-Custody documentation for the data set?	YES							
В	Were all QA/QC procedures required for the specified analytical methods(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?	YES							
С	Does the analytical data included in this report meet all the requirements for "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	YES							
D	VPH and EPH methods only: Was the VPH or EPH method run without significant modifications, as specified in Section 11.3?	N/A							
A res	ponse to questions E and F is required for "Presumptive Certainty" status								
E	Were all QC performance standards and recommendations for the specified method(s) achieved?	NO							
F	Were results for all analyte-list compounds/elements for the specified method(s) reported?	NO							

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: RAYTHEON WAYLAND Project Number: 0095922
 Lab Number:
 L0902334

 Report Date:
 02/26/09

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

MCP Related Narratives

Sample Receipt The sample was Field Filtered for Dissolved Metals only.

Volatile Organics

In reference to question E:

The WG353601-1/-2 LCS/LCSD recoveries associated with L0902334-01 are below the acceptance criteria for Dichlorodifluoromethane (68%/64%); however, it has been identified as a "difficult" analyte. The results of the associated sample are reported; however, all results are considered to have a potentially low bias for this compound.

 Lab Number:
 L0902334

 Report Date:
 02/26/09

Case Narrative (continued)

In reference to question F:

The sample was analyzed for a subset of MCP compounds per the Chain of Custody.

Metals

In reference to question F:

The sample was analyzed for a subset of MCP compounds per the Chain of Custody.

Non-MCP Related Narratives

TOC

The sample was preserved in-house on February 19, 2009.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

tichelle M. Monis

Authorized Signature:

Title: Technical Director/Representative

Date: 02/26/09

ORGANICS

VOLATILES

Project Name: RAYTHEON WAYLAND Lab Number: L0902334 Project Number: Report Date: 0095922 02/26/09 SAMPLE RESULTS Lab ID: Date Collected: L0902334-01 02/18/09 08:15 Client ID: Date Received: 02/18/09 MW-264M-20090218-01 Field Prep: Field Filtered Sample Location: WAYLAND, MA Matrix: Water Analytical Method: 60,8260B 02/20/09 16:08 Analytical Date:

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
MCP Volatile Organics - Westborough Lab					
Methylene chloride	ND		ug/l	5.0	1
1,1-Dichloroethane	ND		ug/l	0.75	1
Chloroform	ND		ug/l	0.75	1
Carbon tetrachloride	ND		ug/l	0.50	1
1,2-Dichloropropane	ND		ug/l	1.8	1
Dibromochloromethane	ND		ug/l	0.50	1
1,1,2-Trichloroethane	ND		ug/l	0.75	1
Tetrachloroethene	9.0		ug/l	0.50	1
Chlorobenzene	ND		ug/l	0.50	1
1,2-Dichloroethane	ND		ug/l	0.50	1
1,1,1-Trichloroethane	ND		ug/l	0.50	1
Bromodichloromethane	ND		ug/l	0.50	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Bromoform	ND		ug/l	2.0	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
Chloromethane	ND		ug/l	2.5	1
Vinyl chloride	2.2		ug/l	1.0	1
Chloroethane	ND		ug/l	1.0	1
1,1-Dichloroethene	ND		ug/l	0.50	1
trans-1,2-Dichloroethene	ND		ug/l	0.75	1
Trichloroethene	41		ug/l	0.50	1
1,2-Dichlorobenzene	ND		ug/l	2.5	1
1,3-Dichlorobenzene	ND		ug/l	2.5	1
1,4-Dichlorobenzene	ND		ug/l	2.5	1
cis-1,2-Dichloroethene	40		ug/l	0.50	1
Dichlorodifluoromethane	ND		ug/l	5.0	1
1,2-Dibromoethane	ND		ug/l	2.0	1
1,3-Dichloropropane	ND		ug/l	2.5	1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	1

02260914:40

Analyst:

PD

02260914:40

02/26/09

Lab Number: L0902334

Project Number: 0095922

Report Date:

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L0902334-01 MW-264M-20090218-01 WAYLAND, MA				Date Collected Date Received Field Prep:		
Parameter		Result	Qualifier	Units	RDL	Dilution Factor	
MCP Volatile Organics	- Westborough Lab						
o-Chlorotoluene		ND		ug/l	2.5	1	
p-Chlorotoluene		ND		ug/l	2.5	1	
Hexachlorobutadiene		ND		ug/l	0.60	1	
1,2,4-Trichlorobenzene		ND		ug/l	2.5	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	89	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	94	70-130
Dibromofluoromethane	95	70-130

Project Number: 0095922

5000

Report Date:

Lab Number:

L0902334

02/26/09

Analytical Method:	60,8260B
Analytical Date:	02/20/09 09:05
Analyst:	PD

rameter	Result	Qualifier		Units	RDL
CP Volatile Organics - West	porough Lab for	sample(s):	01	Batch:	WG353601-3
Methylene chloride	ND			ug/l	5.0
1,1-Dichloroethane	ND			ug/l	0.75
Chloroform	ND			ug/l	0.75
Carbon tetrachloride	ND			ug/l	0.50
1,2-Dichloropropane	ND			ug/l	1.8
Dibromochloromethane	ND			ug/l	0.50
1,1,2-Trichloroethane	ND			ug/l	0.75
Tetrachloroethene	ND			ug/l	0.50
Chlorobenzene	ND			ug/l	0.50
Trichlorofluoromethane	ND			ug/l	2.5
1,2-Dichloroethane	ND			ug/l	0.50
1,1,1-Trichloroethane	ND			ug/l	0.50
Bromodichloromethane	ND			ug/l	0.50
trans-1,3-Dichloropropene	ND			ug/l	0.50
cis-1,3-Dichloropropene	ND			ug/l	0.50
1,1-Dichloropropene	ND			ug/l	2.5
Bromoform	ND			ug/l	2.0
1,1,2,2-Tetrachloroethane	ND			ug/l	0.50
Benzene	ND			ug/l	0.50
Toluene	ND			ug/l	0.75
Ethylbenzene	ND			ug/l	0.50
Chloromethane	ND			ug/l	2.5
Bromomethane	ND			ug/l	1.0
Vinyl chloride	ND			ug/l	1.0
Chloroethane	ND			ug/l	1.0
1,1-Dichloroethene	ND			ug/l	0.50
trans-1,2-Dichloroethene	ND			ug/l	0.75
Trichloroethene	ND			ug/l	0.50
1,2-Dichlorobenzene	ND			ug/l	2.5
1,3-Dichlorobenzene	ND			ug/l	2.5
1,4-Dichlorobenzene	ND			ug/l	2.5

Project Number: 0095922

5000

Report Date:

Lab Number:

L0902334

02/26/09

Analytical Method:	60,8260B
Analytical Date:	02/20/09 09:05
Analyst:	PD

arameter	Result	Qualifier		Units	RDL
CP Volatile Organics ·	- Westborough Lab for	sample(s):	01	Batch:	WG353601-3
Methyl tert butyl ether	ND			ug/l	1.0
p/m-Xylene	ND			ug/l	1.0
o-Xylene	ND			ug/l	1.0
cis-1,2-Dichloroethene	ND			ug/l	0.50
Dibromomethane	ND			ug/l	5.0
1,2,3-Trichloropropane	ND			ug/l	5.0
Styrene	ND			ug/l	1.0
Dichlorodifluoromethane	ND			ug/l	5.0
Acetone	ND			ug/l	5.0
Carbon disulfide	ND			ug/l	5.0
2-Butanone	ND			ug/l	5.0
4-Methyl-2-pentanone	ND			ug/l	5.0
2-Hexanone	ND			ug/l	5.0
Bromochloromethane	ND			ug/l	2.5
Tetrahydrofuran	ND			ug/l	10
2,2-Dichloropropane	ND			ug/l	2.5
1,2-Dibromoethane	ND			ug/l	2.0
1,3-Dichloropropane	ND			ug/l	2.5
1,1,1,2-Tetrachloroethane	ND			ug/l	0.50
Bromobenzene	ND			ug/l	2.5
n-Butylbenzene	ND			ug/l	0.50
sec-Butylbenzene	ND			ug/l	0.50
tert-Butylbenzene	ND			ug/l	2.5
o-Chlorotoluene	ND			ug/l	2.5
p-Chlorotoluene	ND			ug/l	2.5
1,2-Dibromo-3-chloropropa	ane ND			ug/l	2.5
Hexachlorobutadiene	ND			ug/l	0.60
Isopropylbenzene	ND			ug/l	0.50
p-Isopropyltoluene	ND			ug/l	0.50
Naphthalene	ND			ug/l	2.5

Project Number: 0095922

5000

Report Date:

Lab Number:

L0902334

02/26/09

Analytical Method:	60,8260B
Analytical Date:	02/20/09 09:05
Analyst:	PD

Parameter	Result	Qualifier		Units	RDL
ICP Volatile Organics - Wes	tborough Lab for s	sample(s):	01	Batch:	WG353601-3
1,2,3-Trichlorobenzene	ND			ug/l	2.5
1,2,4-Trichlorobenzene	ND			ug/l	2.5
1,3,5-Trimethylbenzene	ND			ug/l	2.5
1,2,4-Trimethylbenzene	ND			ug/l	2.5
Ethyl ether	ND			ug/l	2.5
Isopropyl Ether	ND			ug/l	2.0
Ethyl-Tert-Butyl-Ether	ND			ug/l	2.0
Tertiary-Amyl Methyl Ether	ND			ug/l	2.0
1,4-Dioxane	ND			ug/l	250

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	90		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	94		70-130	
Dibromofluoromethane	96		70-130	

Project Name: RAYTHEON WAYLAND

Project Number: 0095922

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
ICP Volatile Organics - Westborough Lab	Associated sample(s): 0	1 Batch: WG353	3601-1 WG353601-2		
Methylene chloride	98	95	70-130	3	25
1,1-Dichloroethane	93	89	70-130	4	25
Chloroform	99	95	70-130	4	25
Carbon tetrachloride	102	100	70-130	2	25
1,2-Dichloropropane	101	99	70-130	2	25
Dibromochloromethane	99	101	70-130	2	25
1,1,2-Trichloroethane	100	100	70-130	0	25
Tetrachloroethene	109	106	70-130	3	25
Chlorobenzene	108	108	70-130	0	25
Trichlorofluoromethane	104	99	70-130	5	25
1,2-Dichloroethane	92	88	70-130	4	25
1,1,1-Trichloroethane	100	97	70-130	3	25
Bromodichloromethane	108	104	70-130	4	25
trans-1,3-Dichloropropene	96	98	70-130	2	25
cis-1,3-Dichloropropene	90	89	70-130	1	25
1,1-Dichloropropene	97	94	70-130	3	25
Bromoform	102	105	70-130	3	50
1,1,2,2-Tetrachloroethane	102	102	70-130	0	25
Benzene	103	100	70-130	3	25
Toluene	107	106	70-130	1	25
Ethylbenzene	108	106	70-130	2	25

Project Name: RAYTHEON WAYLAND

Project Number: 0095922

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
ICP Volatile Organics - Westborough Lab	Associated sample(s):	01 Batch: WG35	3601-1 WG353601-2		
Chloromethane	91	89	70-130	2	50
Bromomethane	78	90	70-130	14	50
Vinyl chloride	92	89	70-130	3	25
Chloroethane	111	105	70-130	6	25
1,1-Dichloroethene	97	92	70-130	5	25
trans-1,2-Dichloroethene	98	93	70-130	5	25
Trichloroethene	95	93	70-130	2	25
1,2-Dichlorobenzene	109	109	70-130	0	25
1,3-Dichlorobenzene	115	108	70-130	6	25
1,4-Dichlorobenzene	113	110	70-130	3	25
Methyl tert butyl ether	95	96	70-130	1	25
p/m-Xylene	110	108	70-130	2	25
o-Xylene	111	109	70-130	2	25
cis-1,2-Dichloroethene	99	98	70-130	1	25
Dibromomethane	101	98	70-130	3	25
1,2,3-Trichloropropane	102	102	70-130	0	25
Styrene	113	113	70-130	0	25
Dichlorodifluoromethane	68	64	70-130	6	50
Acetone	70	72	70-130	3	50
Carbon disulfide	84	77	70-130	9	50
2-Butanone	81	81	70-130	0	50

Project Name: RAYTHEON WAYLAND

Project Number: 0095922

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
MCP Volatile Organics - Westborough Lab	b Associated sample(s): 01	Batch: WG353	3601-1 WG353601-2		
4-Methyl-2-pentanone	80	80	70-130	0	50
2-Hexanone	74	77	70-130	4	50
Bromochloromethane	114	110	70-130	4	25
Tetrahydrofuran	86	91	70-130	6	25
2,2-Dichloropropane	110	107	70-130	3	50
1,2-Dibromoethane	103	106	70-130	3	25
1,3-Dichloropropane	96	96	70-130	0	25
1,1,1,2-Tetrachloroethane	106	105	70-130	1	25
Bromobenzene	111	108	70-130	3	25
n-Butylbenzene	106	101	70-130	5	25
sec-Butylbenzene	112	106	70-130	6	25
tert-Butylbenzene	111	106	70-130	5	25
o-Chlorotoluene	106	102	70-130	4	25
p-Chlorotoluene	108	103	70-130	5	25
1,2-Dibromo-3-chloropropane	83	87	70-130	5	50
Hexachlorobutadiene	115	106	70-130	8	25
Isopropylbenzene	112	110	70-130	2	25
p-Isopropyltoluene	116	112	70-130	4	25
Naphthalene	90	94	70-130	4	25
n-Propylbenzene	111	106	70-130	5	25
1,2,3-Trichlorobenzene	94	97	70-130	3	25

Project Name: RAYTHEON WAYLAND

Project Number: 0095922

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
ICP Volatile Organics - Westborough L	ab Associated sample(s): 01	Batch: WG353	601-1 WG353601-2		
1,2,4-Trichlorobenzene	102	103	70-130	1	25
1,3,5-Trimethylbenzene	110	106	70-130	4	25
1,2,4-Trimethylbenzene	110	107	70-130	3	25
Ethyl ether	104	99	70-130	5	25
Isopropyl Ether	90	87	70-130	3	25
Ethyl-Tert-Butyl-Ether	96	95	70-130	1	25
Tertiary-Amyl Methyl Ether	101	100	70-130	1	25
1,4-Dioxane	92	90	70-130	2	50

Surrogate	LCS %Recovery Qualifier	LCSD %Recovery Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	88	86	70-130
Toluene-d8	96	98	70-130
4-Bromofluorobenzene	94	92	70-130
Dibromofluoromethane	96	97	70-130

METALS

									02260914:4	40
Project Name:	RAYTHE	ON WAYL	AND			Lab	Number:	I	_0902334	
Project Number:	0095922					Rej	oort Date:	(02/26/09	
			SA	MPLE	RESULT	S				
Lab ID:	L090233	4-01				Dat	e Collected:	(02/18/09 08:	:15
Client ID:	MW-264	M-20090218	3-01			Dat	e Received:	(02/18/09	
Sample Location:	WAYLAN	ID, MA				Fie	d Prep:	I	Field Filtered	b
Matrix:	Water									
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Me	tals - West	borough La	boratory							
Iron, Dissolved	12		mg/l	0.05	1	02/19/09 18:30	02/20/09 14:21	I EPA 3005A	60,6010B	AI
Manganese, Dissolved	0.158		mg/l	0.010	1	02/19/09 18:30	02/20/09 14:21	I EPA 3005A	60,6010B	AI

Project Name:RAYTHEON WAYLANDProject Number:0095922

 Lab Number:
 L0902334

 Report Date:
 02/26/09

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
MCP Dissolved Metals	- Westborough Labora	atory for a	sample(s): 01 Ba	tch: WG35339	97-1		
Iron, Dissolved	ND	mg/l	0.05	1	02/19/09 18:30	02/20/09 13:37	60,6010B	AI
Manganese, Dissolved	ND	mg/l	0.010	1	02/19/09 18:30	02/20/09 13:37	60,6010B	AI

Prep Information

Digestion Method: EPA 3005A

Project Name: RAYTHEON WAYLAND

Project Number: 0095922

 Lab Number:
 L0902334

 Report Date:
 02/26/09

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
MCP Dissolved Metals - Westborough	Laboratory Associated samp	le(s): 01 Batch:	WG353397-2 WG353397-3		
Iron, Dissolved	96	95	80-120	1	20
Manganese, Dissolved	95	94	80-120	1	20

INORGANICS & MISCELLANEOUS

Project Name:RAYTHEON WAYLANDProject Number:0095922

Lab Number: L0902334 Report Date: 02/26/09

SAMPLE RESULTS

Lab ID:	L0902334-01	Date Collected:	02/18/09 08:15
Client ID:	MW-264M-20090218-01	Date Received:	02/18/09
Sample Location:	WAYLAND, MA	Field Prep:	Field Filtered
Matrix:	Water		

Parameter	Result	Qualifier Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough La	boratory						
Alkalinity, Total	81	mg CaCO3/L	2.0	1	-	02/19/09 10:46	30,2320B	SD
Chloride	16	mg/l	1.0	1	-	02/18/09 18:36	1,9251	DD
Nitrogen, Nitrate	ND	mg/l	0.10	1	-	02/19/09 21:11	30,4500NO3-F	DD
Phosphorus, Total	0.051	mg/l	0.010	1	-	02/21/09 17:35	30,4500P-E	ST
Sulfate	26	mg/l	10	1	02/20/09 09:30	02/20/09 09:30	1,9038	SD
Total Organic Carbon	1.1	mg/l	0.50	1	-	02/23/09 10:16	1,9060	DW

Project Name:RAYTHEON WAYLANDProject Number:0095922

 Lab Number:
 L0902334

 Report Date:
 02/26/09

Parameter	Result Qualifier	Units	RDL	Dilutio Facto		Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Laboratory	for sample(s)	: 01	Batch:	WG353211-2			
Chloride	ND	mg/l	1.0	1	-	02/18/09 18:23	1,9251	DD
General Chemistry -	Westborough Laboratory	for sample(s)	: 01	Batch:	WG353381-2			
Nitrogen, Nitrate	ND	mg/l	0.10	1	-	02/19/09 20:53	30,4500NO3-F	DD
General Chemistry -	Westborough Laboratory	for sample(s)	: 01	Batch:	WG353642-1			
Total Organic Carbon	ND	mg/l	0.50	1	-	02/23/09 10:16	1,9060	DW
General Chemistry -	Westborough Laboratory	for sample(s)	: 01	Batch:	WG353989-1			
Phosphorus, Total	ND	mg/l	0.010	1	-	02/21/09 17:07	30,4500P-E	ST
General Chemistry -	Westborough Laboratory	for sample(s)	: 01	Batch:	WG353997-1			
Sulfate	ND	mg/l	10	1	02/20/09 09:30	02/20/09 09:30	1,9038	SD
General Chemistry -	Westborough Laboratory	for sample(s)	: 01	Batch:	WG353998-1			
Alkalinity, Total	ND	mg CaCO3/L	2.0	1	-	02/19/09 10:46	30,2320B	SD

Project Name:	RAYTHEON WAYLAND
•	

Project Number: 0095922

 Lab Number:
 L0902334

 Report Date:
 02/26/09

Parameter	LCS %Recovery	%	LCSD Recover		Recovery Limits	RPD	RPI	D Limits
General Chemistry - Westborough Laboratory	Associated sample(s):	01	Batch:	WG353211-1				
Chloride	100		-		90-110	-		
General Chemistry - Westborough Laboratory	Associated sample(s):	01	Batch:	WG353381-1				
Nitrogen, Nitrate	98		-		90-110	-		
General Chemistry - Westborough Laboratory	Associated sample(s):	01	Batch:	WG353642-2				
Total Organic Carbon	98		-		90-110	-		
General Chemistry - Westborough Laboratory	Associated sample(s):	01	Batch:	WG353989-2				
Phosphorus, Total	102		-		85-115	-		
General Chemistry - Westborough Laboratory	Associated sample(s):	01	Batch:	WG353997-2				
Sulfate	105		-		90-115	-		
General Chemistry - Westborough Laboratory	Associated sample(s):	01	Batch:	WG353998-2				
Alkalinity, Total	102		-		80-115	-		4

Matrix Spike Analysis Batch Quality Control

Project Name: RAYTHEON WAYLAND

Project Number: 0095922

 Lab Number:
 L0902334

 Report Date:
 02/26/09

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
General Chemistry -	Westborough Laboratory	Associated sa	ample(s): 01	QC Batch ID:	WG353211-3	QC Sample:	L0901996-05	Client ID:	MS Sample
Chloride	350	20	360	50	-	-	58-140	-	7
General Chemistry -	· Westborough Laboratory	Associated sa	ample(s): 01	QC Batch ID:	WG353381-3	QC Sample:	L0902033-01	Client ID:	MS Sample
Nitrogen, Nitrate	3.6	4	7.3	92	-	-	83-120	-	6
General Chemistry -	· Westborough Laboratory	Associated sa	ample(s): 01	QC Batch ID:	WG353642-3	QC Sample:	L0902027-01	Client ID:	MS Sample
Total Organic Carbon	50	160	200	96	-	-	80-120	-	20
General Chemistry -	Westborough Laboratory	Associated sa	ample(s): 01	QC Batch ID:	WG353989-3	QC Sample:	L0901231-40	Client ID:	MS Sample
Phosphorus, Total	0.082	0.5	0.572	98	-	-	80-120	-	20
General Chemistry -	Westborough Laboratory	Associated sa	ample(s): 01	QC Batch ID:	WG353997-3	QC Sample:	L0901231-41	Client ID:	MS Sample
Sulfate	25	40	66	102	-	-	55-147	-	14
General Chemistry -	Westborough Laboratory	Associated sa	ample(s): 01	QC Batch ID:	WG353998-3	QC Sample:	L0901231-42	Client ID:	MS Sample
Alkalinity, Total	68	100	170	102	· ·	-	86-116	-	4

Lab Duplicate Analysis Batch Quality Control

Project Name: RAYTHEON WAYLAND Project Number: 0095922

Lab Number: L0902334 Report Date: 02/26/09

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
General Chemistry - Westborough Laboratory	Associated sample(s): 01	QC Batch ID: WG353211-4	QC Sample:	L0901996-05	Client ID: DUP Sample
Chloride	350	350	mg/l	6	7
General Chemistry - Westborough Laboratory	Associated sample(s): 01	QC Batch ID: WG353381-4	QC Sample:	L0902033-02	Client ID: DUP Sample
Nitrogen, Nitrate	1.3	1.24	mg/l	2	6
General Chemistry - Westborough Laboratory	Associated sample(s): 01	QC Batch ID: WG353642-4	QC Sample:	L0902027-01	Client ID: DUP Sample
Total Organic Carbon	50	51	mg/l	2	20
General Chemistry - Westborough Laboratory	Associated sample(s): 01	QC Batch ID: WG353989-4	QC Sample:	L0901231-40	Client ID: DUP Sample
Phosphorus, Total	0.082	0.082	mg/l	0	20
General Chemistry - Westborough Laboratory	Associated sample(s): 01	QC Batch ID: WG353997-4	QC Sample:	L0901231-41	Client ID: DUP Sample
Sulfate	25	25	mg/l	0	14
General Chemistry - Westborough Laboratory	Associated sample(s): 01	QC Batch ID: WG353998-4	QC Sample:	L0901231-42	Client ID: DUP Sample
Alkalinity, Total	68	66	mg CaCO3/L	3	4

Project Number: 0095922

Lab Number: L0902334 Report Date: 02/26/09

GLOSSARY

Acronyms

- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD- Laboratory Control Sample Duplicate: Refer to LCS.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NI Not Ignitable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- ND Not detected at the reported detection limit for the sample.
- RDL Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

The following data qualifiers have been identified for use under the CT DEP Reasonable Confidence Protocols.

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- J Estimated value. The analyte was tentatively identified; the quantitation is an estimation. (Tentatively identified compounds only.)

Standard Qualifiers

H - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

 Lab Number:
 L0902334

 Report Date:
 02/26/09

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IIIA, 1997.
- 30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.
- 60 Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). May 2004.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised February 18, 2009 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. Organic Parameters: Haloacetic Acids, Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP), Ethylene Dibromide (EDB).) Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Calcium Hardness, Silica, Sulfate, Sulfide, Ammonia, Kieldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics.) Solid Waste/Soil (Inorganic Parameters: Lead in Paint, pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc,

Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), Reactivity. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Extractable Petroleum Hydrocarbons (ETPH), Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Volatile Organics, Acid Extractables (Phenols), 3.3'-Dichlorobenzidine, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Maine Department of Human Services Certificate/Lab ID: MA0086.

Drinking Water (<u>Inorganic Parameters</u>: SM9215B, 9221E, 9222B, 9222D, 9223B, EPA 150.1, 180.1, 300.0, 353.2, SM2130B, 2320B, 4500CI-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B,4500NO3-F, EPA 200.7, EPA 200.8, 245.1. <u>Organic Parameters</u>: 504.1, 524.2, SM 6251B.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, Lachat 10-107-06-1-B, SM2320B, 2340B, 2510B, 2540C, 2540D, 426C, 4500CI-D, 4500CI-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500Norg-C, 4500NH3-B, 4500NH3-G, 4500NH3-H, 4500NO3-F, 4500P-B.5, 4500P-E, 5210B, 5220D, 5310C, EPA 200.7, 200.8, 245.1. Organic Parameters: 608, 624.)

Massachusetts Department of Environmental Protection <u>Certificate/Lab ID</u>: M-MA086. Drinking Water

Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl) (EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Nitrite-N, Fluoride, Sulfate) 353.2 for: Nitrate-N, Nitrite-N; SM4500NO3-F, 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, 2320B, SM2540C, EPA 150.1, SM4500H-B. Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics)

(504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), SM6251B, 314.0.

Non-Potable Water

Inorganic Parameters:, (EPA 200.8 for: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn) (EPA 200.7 for: Al,Sb,As,Be,Cd,Cr,Co,Cu,Fe,Pb,Mn,Mo,Ni,Se,Ag,Sr,Tl,Ti,V,Zn,Ca,Mg,Na,K) 245.1, SM4500H,B, EPA 120.1, SM2510B, 2540C, 2540B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Nitrate-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-B,C-Titr, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CN-CE, 2540D, 4500CL-D, EPA 1664, SM14 510AC, EPA 420.1 <u>Organic Parameters</u>: (EPA 624 for Volatile Halocarbons, Volatile Aromatics) (608 for: Chlordane, Aldrin, Dieldrin, DDD, DDE, DDT, Heptachlor, Heptachlor Epoxide, PCB-Water) 600/4-81-045-PCB-Oil

Massachusetts Department of Environmental Protection <u>Certificate/Lab ID</u>: M-MA086. Drinking Water

Microbiology Parameters: SM9215B; MF-SM9222B; ENZ. SUB. SM9223; EC-SM9221E; MF-SM9222D; ENZ. SUB. SM9223;

New Hampshire Department of Environmental Services Certificate/Lab ID: 200307.

Drinking Water (Inorganic Parameters: SM6215B, 9222B, 9223B Colilert, EPA 200.7, 200.8, 245.2, 110.2, 120.1, 150.1, 300.0, 325.2, 314.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 331.0. <u>Organic Parameters</u>: 504.1, 524.2, SM6251B.)

Non-Potable Water (<u>Inorganic Parameters</u>: SM9222D, 9221B, 9222B, 9221E-EC, EPA 200.7, 200.8, 245.1, 245.2, SW-846 6010B, 6020, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 150.1, 300.0, 305.1, 310.1, 325.2, 340.2, 350.1, 350.2, 351.1, 353.2, 354.1, 365.2, 375.4, 376.2, 405.1, 415.1, 420.1, 425.1, 1664A, SW-846 9010, 9030, 9040B, EPA 160.1, 160.2, 160.3, SM426C, SM2310B, 2540B, 2540D, 4500H+B, 4500NH3-H, 4500NH3-E, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 2320B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-117-07-1-B, LACHAT 10-107-06-1-B, LACHAT 10-107-04-1-C, LACHAT 10-107-04-1-J, LACHAT 10-117-07-1-A, SM4500CL-E, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D. <u>Organic Parameters</u>: SW-846 3005A, 3015A, 3510C, 5030B, 8021B, 8260B, 8270C, 8330, EPA 624, 625, 608, SW-846 8082, 8081A.)

Solid & Chemical Materials (<u>Inorganic Parameters</u>: SW-846 6010B, 7196A, 7471A, 7.3.3.2, 7.3.4.2, 1010, 1030, 9010, 9012A, 9014, 9030B, 9040, 9045C, 9050C, 1311, 3005A, 3050B, 3051A. <u>Organic Parameters</u>: SW-846 3540C, 3545, 3580A, 5030B, 5035, 8021B, 8260B, 8270C, 8330, 8151A, 8082, 8081A.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935.

Drinking Water (<u>Inorganic Parameters</u>: SM9222B, 9221E, 9223B, 9215B, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 2540C, 2320B, 314.0, 331.0, 110.2, SM2120B, 2510B, 5310C, EPA 150.1, SM4500H-B, EPA 200.8, 245.2. <u>Organic Parameters</u>: 504.1, SM6251B, 524.2.)

Non-Potable Water (Inorganic Parameters: SM5210B, EPA 410.1, SM5220D, 4500CI-D, EPA 300.0, SM2120B, SM4500F-BC, EPA 200.7, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, SM15 426C, SM9221CE, 9222D, 9221B, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, EPA 350.2/.1, SM5210B, SW-846 3015, 6020, 7470A, 5540C, 4500H-B, EPA 200.8, SM3500Cr-D, EPA 245.1, 245.2, SW-846 9040B, 3005A, EPA 6010B, 7196A, SW-846 9010B, 9030B. <u>Organic Parameters</u>: SW-846 8260B, 8270C, 3510C, EPA 608, 624, 625, SW-846 5030B, 8021B, 8081A, 8082, 8151A, 8330.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 9040B, 3005A, 6010B, 7196A, 5030B, 9010B, 9030B, 1030, 1311, 3050B, 3051, 7471A, 9014, 9012A, 9045C, 9050A, 9065. <u>Organic Parameters</u>: SW-846 8021B, 8081A, 8082, 8151A, 8330, 8260B, 8270C, 1311, 3540C, 3545, 3550B, 3580A, 5035L, 5035H.)

New York Department of Health Certificate/Lab ID: 11148.

Drinking Water (<u>Inorganic Parameters</u>: SM9223B, 9222B, 8215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 314.0, 331.0, SM2320B, EPA 300.0, 325.2, 110.2, SM2120B, 4500CN-E, 4500F-C, EPA 150.1, SM4500H-B, 4500NO3-F, 2540C, EPA 120.1, SM 2510B. <u>Organic Parameters</u>: EPA 524.2, 504.1, SM6251B.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, EPA 405.1, SM5210B, EPA 410.4, SM5220D, EPA 305.1, SM2310B-4a, EPA 310.1, SM2320B, EPA 200.7, 300.0, 325.2, LACHAT 10-117-07-1A or B, SM4500CI-E, EPA 340.2, SM4500F-C, EPA 375.4, SM15 426C, EPA 350.1, 350.2, LACHAT 10-107-06-1-B, SM4500NH3-H, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, LACHAT 10-107-041-C, SM4500-NO30F, EPA 354.1, SM4500-NO2-B, EPA 365.2, SM4500P-E, EPA 160.3, SM2540B, EPA 160.1, SM2540C, EPA 160.2, SM2540D, EPA 200.8, EPA 6010B, 6020, EPA 7196A, S\M3500Cr-D, EPA 245.1, 245.2, 7470A, 110.2, SM2120B, 335.2, LACHAT 10-204-00-1-A, EPA 150.1, 9040B, SM4500-HB, EPA 1664A, EPA 415.1, SM5310C, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, EPA 376.2, SM4500S-D, EPA 425.1, SM5540C, EPA 3005A, 3015. Organic Parameters: EPA 624, 8260B, 8270C, 625, 608, 8081A, 8151A, 8330, 8082, 8021B, EPA 3510C, 5030B, 9010B, 9030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 9040B, 9045C, 1010, 1030, SW-846 Ch 7 Sec 7.3, EPA 6010B, 7196A, 7471A, 9012A, 9014, 9040B, 9045C, 9065, 9050, EPA 1311, 3005A, 3050B, 3051, 9010B, 9030B. <u>Organic Parameters</u>: EPA 8260B, 8270C, 8081A, 8151A, 8330, 8082, 8021B, 3540C, 3545, 3580, 5030B, 5035.)

Analytical Services Protocol: CLP Volatile Organics, CLP Inorganics, CLP PCB/Pesticides.

Rhode Island Department of Health <u>Certificate/Lab ID</u>: LAO00065. Refer to MA-DEP Certificate for Potable and Non-Potable Water. Refer to NY-DOH Certificate for Potable and Non-Potable Water.

Pennsylvania Department of Environmental Protection Certificate/Lab ID : 68-03671. Registered Laboratory.

		Data Raced in Labor 2/18	Mary 19 8/	ALPHAJOS E. LOYAD334
	Project Information	Report Information - Data Deliverables		Billing Information
WESTBUCKU, MA MICROFILESSON TEL: 508-896-9220 TEL: 508-822-9000 EAV: 508-808-9193 FAX: 508-922-3288	Project Name: Kaythan Way land			Same as Client info PO #:
ation	Project Location: Waylend, MM	Regulatory Regulirements/Report Limits	ortLimits	
client: EAM-MA	Project #: 0095922	State /Fed Program	Criteria	
Address:	Project Manager: J Flattery		-	
	ALPHA Quote #:	MA MCP PRESUMPTIVE CERTAINTY		CT REASONABLE CONFIDENCE PROTO-
Phone:	Turn-Around Time		Are MCP Analytical Methods Required?	5
Fax:	D Standard RUSH (only confirmed if the approved)		Are C1 RCP (Reasonable Contidence Protocols) Required	
Email:	Date Due:			SAMPLE HANDLING
These samples have been previously analyzed by Alpha		24		
Other Project Specific Requirements/Comments/Detection Limits	rements/Comments/Detection Limits:	ANA		ă
		21 B No alinit s C		Preservation
ALPHA Lab ID Sample ID	Collection Sample San Date Time Matrix In	Sampler's & CAD, TOT		Sample Specific Comments s
	10-01-01-0100 0 2:15 (11-010			
01001-1117012-00111-1-10010	200 1. 0 1.10.1 . 0.201 007 (11.10) Y - (Mill			
DI EASE ANSWER DUESTIONS ABOVE!	Container Type	Туре		Please print clearly, legibly and com-
PLEASE ANSWER ACCOUNTS	Preservative	vative		in and tumaround time clock will not
IS YOUR PROJECT	Relinquished By: Date/Time	Rece	Date/Time	start until any ambiguities are resolved. All samples submitted are subject to
MAMCP or CTRCP?	de la	r r	- 2/25/01	Alpha's Terms and Conditions. See reverse side.
FORM NO: 01-01 (rev. 14-OCT-07)				

				FORM NO: 01-01 (mv: 14-0CT-07)
	11112 On the That I WARNED TO BOILE	2/12/09/10:5	un Conley	MAMCP or CIRCP?
	sived By:	Date/Time	Relinquished By:	IS YOUR PROJECT
10	18 / A AICIA VI	Preservative		
		Container Type		
			-	
Tol unpreserved &	2 11121	65	14-01 2/14/09 0915	1012/ MUS-24M -20090215-01
Sample Specific Continuents	1 K C	Matrix	Date Time	Sample ID
	No 26	Sample Sampler's	Collection	
	A Charles A Charles			
	NOIT MARSHOW		nents/Detection Limits:	Other Project Specific Requirements/Comments/Detection Limits:
	1 - 2 - 1 - to the of the	Time:	Date Due: 2/25/09	Email: bahacur, frost & urm.cum
		RUSH (only cantimed if pre-approved)	Ja Standard D RUSH (m	Fax: 617-267-6447
tequired? Intence Protocols) Required?			Turn-Around Time	Phone: 617-64/6-780
CERTAINTY CT REASONABLE CONFIDENCE PROTO-	TIVE		ALPHA Quote #:	R. than Mr.
	6	Flattery	Project Manager: Jason Flattery	andress the internet of the
	State / Cod Process		Project #: 1095422	client: FRM
		-	Project Location: (Jcha)	Client Information
Same as Client into PO #:		n Wayland	Project Name: Ray Theon Wayland	WESTBORO, MA MAYNAY RELLS AN TEL: 508-898-9220 TEL: 508-823300 TEL: 508-898-9220 FAX: 508-8223286
Billing Information	Report Information - Data Deliverables		Project Information	• •
		PAGE 2 OF 2	CHAIN OF CUSTODY	

ļ

ANALYTICAL REPORT

Lab Number:	L0902526
Client:	ERM Consulting & Engineering, Inc. 399 Boylston Street 6th Floor Boston, MA 02116
ATTN:	Bahaar Frost
Project Name:	RAYTHEON WAYLAND
Project Number:	0095922
Report Date:	03/04/09

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:RAYTHEON WAYLANDProject Number:0095922

 Lab Number:
 L0902526

 Report Date:
 03/04/09

Alpha Sample ID L0902526-01 Client ID DEP-19M-20090219-01 Sample Location WAYLAND, MA

Project Name:RAYTHEON WAYLANDProject Number:0095922

 Lab Number:
 L0902526

 Report Date:
 03/04/09

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An a	ffirmative response to questions A, B, C & D is required for "Presumptive Certainty" status	
A	Were all samples received by the laboratory in a condition consistent with those described on their Chain-of-Custody documentation for the data set?	YES
В	Were all QA/QC procedures required for the specified analytical methods(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?	YES
С	Does the analytical data included in this report meet all the requirements for "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	YES
D	VPH and EPH methods only: Was the VPH or EPH method run without significant modifications, as specified in Section 11.3?	N/A
A res	sponse to questions E and F is required for "Presumptive Certainty" status	
E	Were all QC performance standards and recommendations for the specified method(s) achieved?	NO
F	Were results for all analyte-list compounds/elements for the specified method(s) reported?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

 Lab Number:
 L0902526

 Report Date:
 03/04/09

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

MCP Related Narratives Sample Receipt The sample was Field Filtered for Dissolved Metals only.

Volatile Organics

In reference to question E:

The WG353738-1/-2 LCS/LCSD recoveries associated with L0902526-01 are below the acceptance criteria for Dichlorodifluoromethane (60%/65%); however, it has been identified as a "difficult" analyte. The results of the associated sample are reported; however, all results are considered to have a potentially low bias for this compound.

 Lab Number:
 L0902526

 Report Date:
 03/04/09

Case Narrative (continued)

In reference to question F:

All samples were analyzed for a subset of MCP compounds per the Chain of Custody.

Metals

In reference to question F:

All samples were analyzed for a subset of MCP elements per the Chain of Custody.

Non-MCP Related Narratives

Sulfate

L0902526-01 has an elevated detection limit due to the dilution required to quantitate the result within the calibration range.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

gnature:

Title: Technical Director/Representative

Date: 03/04/09

ORGANICS

VOLATILES

Project Name: RAYTHEON WAYLAND Lab Number: L0902526 **Project Number: Report Date:** 0095922 03/04/09 SAMPLE RESULTS Date Collected: Lab ID: L0902526-01 02/19/09 14:30 Client ID: Date Received: 02/20/09 DEP-19M-20090219-01 Field Prep: Sample Location: WAYLAND, MA Field Filtered Matrix: Water Analytical Method: 60,8260B 02/23/09 12:32 Analytical Date: Analyst: MM

ND ug1 5.0 1 1.bichloroethane ND ug1 0.75 1 Chloroferm ND ug1 0.75 1 Carbon tetrachloride ND ug1 0.50 1 1.2-Dichloropropane ND ug1 0.50 1 1.1.2-Trichloroethane ND ug1 0.50 1 1.1.2-Trichloroethane ND ug1 0.50 1 1.1.2-Trichloroethane ND ug1 0.50 1 1.1.2-Dichloroethane ND ug1 0.50 1 1.2-Dichloroethane ND ug1 0.50 1 1.2-Dichloroethane ND ug1 0.50 1 1.2-Dichloropropene ND ug1 0.50 1 1.2-Dichloropropene ND ug1 0.50 1 1.1.2-Trichloroethane ND ug1 0.50 1 1.2-Dichloropropene ND ug1 0.50 1	Parameter	Result	Qualifier	Units	RDL	Dilution Factor
ND ug/l 0.75 1 Chloroform ND ug/l 0.75 1 Carbon tetrachloride ND ug/l 0.50 1 1,2-Dichloropropane ND ug/l 0.50 1 Chlorophane ND ug/l 0.50 1 1,1-2-Trichlorophane ND ug/l 0.50 1 Chlorophane ND ug/l 0.50 1 1,2-Dichlorophane ND ug/l 0.50 1 1,2-Dichlorophane ND ug/l 0.50 1 1,2-Dichlorophane ND ug/l 0.50 1 1,2-Dichlorophopene ND ug/l 0.50 1 1,1,1-Trichlorophane ND ug/l 0.50 1 1,1	MCP Volatile Organics - Westborough Lab					
ND ug/l 0.75 1 Carbon tetrachloride ND ug/l 0.50 1 1.2-Dichloropropane ND ug/l 0.50 1 1.2-Dichloropropane ND ug/l 0.50 1 1.1.2-Trichloroethane ND ug/l 0.50 1 1.1.2-Trichloroethane ND ug/l 0.50 1 1.1.2-Trichloroethane ND ug/l 0.50 1 1.2-Dichloroethane ND ug/l 0.50 1 1.2-Dichloroethane ND ug/l 0.50 1 1.1.1-Trichloroethane ND ug/l 0.50 1 1.1.2-Zettarchloroethane ND ug/l 0.50 1 1.1.2-Zettarchloroethane ND ug/l 0.50	Methylene chloride	ND		ug/l	5.0	1
Carbon tetrachloride ND ug/l 0.50 1 1,2-Dichloropropane ND ug/l 1.8 1 Dibromochloromethane ND ug/l 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 1,1,2-Dichloropropane ND ug/l 0.50 1 trans-1,3-Dichloropropane ND ug/l 0.50 1 trans-1,3-Dichloropropane ND ug/l 0.50 1 trans-1,3-Dichloropropane ND ug/l 0.50 1 trans-1,3-Dichloroptopane ND ug/l 1.0 1 thorowethane ND <td< td=""><td>1,1-Dichloroethane</td><td>ND</td><td></td><td>ug/l</td><td>0.75</td><td>1</td></td<>	1,1-Dichloroethane	ND		ug/l	0.75	1
ND ugr 1.8 1 Dibromochloromethane ND ugrl 0.50 1 1,1,2-Trichloroethane ND ugrl 0.75 1 Tetrachloroethane ND ugrl 0.50 1 Chlorobenzene ND ugrl 0.50 1 1,2-Dichloroethane ND ugrl 0.50 1 1,1,1-Trichloroethane ND ugrl 0.50 1 1,1,1-Trichloroethane ND ugrl 0.50 1 1,1,1-Trichloroethane ND ugrl 0.50 1 Bromodichloromethane ND ugrl 0.50 1 1,1,2-Tetrachloroethane ND ugrl 0.50 1 1,1,2-Zetrachloroethane ND ugrl 0.50	Chloroform	ND		ug/l	0.75	1
ND ug/l 0.50 1 1,1,2.Trichloroethane ND ug/l 0.50 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 1,2.Dichloroethane ND ug/l 0.50 1 1,1.1-Trichloroethane ND ug/l 0.50 1 1,1.1-Trichloroethane ND ug/l 0.50 1 1,1.1-Trichloroethane ND ug/l 0.50 1 Bromodichloropropene ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2.2-Tetrachloroethane ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1.2.2-Tetrachloroethene ND ug/l 0.50 1 1,1.1-Dichloroethene ND ug/l 0.50 1	Carbon tetrachloride	ND		ug/l	0.50	1
ND ug/l 0.75 1 Tetrachloroethane ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloropropene ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 1,1,2-Zrietrachloroethane ND ug/l 0.50 1 1,1,2-Zrietrachloroethane ND ug/l 0.50 1 1,1,2-Zrietrachloroethane ND ug/l 0.50 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 1,2-Dichloroethene ND ug/l 0.50 1 <td>1,2-Dichloropropane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>1.8</td> <td>1</td>	1,2-Dichloropropane	ND		ug/l	1.8	1
Transhoroethene ND ug/l 0.50 1 Chlorobenzene ND ug/l 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 trans-1,2-Dichloroethane ND ug/l 0.50 1 trichoroethane ND ug/l 0.50 1 trichloroethane ND ug/l 0.	Dibromochloromethane	ND		ug/l	0.50	1
ND ug 0.50 1 1,2-Dichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 1,1,1-Trichloroethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 dis-1,3-Dichloropropene ND ug/l 0.50 1 formoform ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Chlorobethane ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Chloroethane ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 1,1-Dichloroethane ND ug/l 0.50 1 1,1-Dichloroethane ND ug/l 0.50 1	1,1,2-Trichloroethane	ND		ug/l	0.75	1
1.2-Dichloroethane ND ug/ 0.50 1 1.1,1-Trichloroethane ND ug/ 0.50 1 Bromodichloromethane ND ug/ 0.50 1 Bromodichloropropene ND ug/ 0.50 1 cis-1,3-Dichloropropene ND ug/ 0.50 1 Bromodichloromethane ND ug/ 0.50 1 Bromodichloropropene ND ug/ 0.50 1 Bromodichloropropene ND ug/ 0.50 1 1,1,2,2-Tetrachloroethane ND ug/ 0.50 1 Chloromethane ND ug/ 0.50 1 Vinyl choride ND ug/ 0.50 1 Chloroethane ND ug/ 0.50 1 1,1-Dichloroethene ND ug/ 0.50 1 1,1-Dichloroethene ND ug/ 0.50 1 1,2-Dichloroethene 12 ug/ 0.50 1 1,2-Dichloroethene ND ug/ 2.5 1	Tetrachloroethene	ND		ug/l	0.50	1
International structure ND Ug/l 0.50 1 Bromodichloromethane ND Ug/l 0.50 1 Bromodichloromethane ND Ug/l 0.50 1 itrans-1,3-Dichloropropene ND Ug/l 0.50 1 Bromodichloromethane ND Ug/l 0.50 1 Bromodichloropropene ND Ug/l 0.50 1 Bromodichloropropene ND Ug/l 0.50 1 Bromodichloropropene ND Ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND Ug/l 0.50 1 Chloromethane ND Ug/l 1.0 1 1,1,2,2-Tetrachloroethane ND Ug/l 1.0 1 Chloroethane ND Ug/l 0.50 1 I,1,2-Dichloroethene ND Ug/l 0.50 1 1,1-Dichloroethene 1.2 Ug/l 0.50 1 1,2-Dichloroethene ND Ug/l </td <td>Chlorobenzene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>1</td>	Chlorobenzene	ND		ug/l	0.50	1
Bromodichloromethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 Bromodiorn ND ug/l 0.50 1 Bromodiorn ND ug/l 0.50 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Chloromethane ND ug/l 1.0 1 Chloromethane ND ug/l 1.0 1 Chloromethane ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 1,2-Dichloroethene 1.2 ug/l 0.50 1 1,3-Dichlorobenzene ND ug/l 2.5 1	1,2-Dichloroethane	ND		ug/l	0.50	1
ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 Bromoform ND ug/l 0.50 1 It,1,2,2-Tetrachloroethane ND ug/l 0.50 1 It,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Chloromethane ND ug/l 2.5 1 Chloromethane ND ug/l 1.0 1 Chloromethane ND ug/l 1.0 1 Chloromethane ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 1,2-Dichlorobenzene ND ug/l 2.5 1 1,3-Dichlorobenzene ND ug/l 2.5 1 1,4-Dichlorobenzene ND ug/l 5.0 1 1,2-D	1,1,1-Trichloroethane	ND		ug/l	0.50	1
ND ug/l 0.50 1 Bromoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Chloromethane ND ug/l 0.50 1 Chloromethane ND ug/l 2.5 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 1,2-Dichloroethene ND ug/l 0.50 1 1,2-Dichlorobenzene ND ug/l 2.5 1 1,3-Dichlorobenzene ND ug/l 2.5 1 1,4-Dichlorobenzene ND ug/l 0.50 1 1,2-Dichloroethene ND ug/l 0.50 1 1,2-Dichloroe	Bromodichloromethane	ND		ug/l	0.50	1
Brownorm ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Chloromethane ND ug/l 2.5 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 1,2-Dichloroethene ND ug/l 0.50 1 1,2-Dichloroethene ND ug/l 2.5 1 1,3-Dichlorobenzene ND ug/l 2.5 1 1,4-Dichloroethene 13 ug/l 0.50 1 1,2-Dichloroethene ND ug/l 5.0 1 1,2-Dichloroethene ND ug/l 5.0 1 <	trans-1,3-Dichloropropene	ND		ug/l	0.50	1
1,1,2,2-Tetrachloroethane ND ug/l 0.50 1 Chloromethane ND ug/l 2.5 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.75 1 1,2-Dichloroethene 1.2 ug/l 0.50 1 1,2-Dichlorobenzene ND ug/l 2.5 1 1,3-Dichlorobenzene ND ug/l 2.5 1 1,4-Dichloroethene 13 ug/l 0.50 1 1,2-Dichloroethene 13 ug/l 0.50 1 1,2-Dichloroethene 13 ug/l 0.50 1 1,2-Dichloroethene ND ug/l 5.0 1 1,2-Dichloroethene ND ug/l 2.0 1 1,2-Dichloroethene ND ug/l 2.0 1 <t< td=""><td>cis-1,3-Dichloropropene</td><td>ND</td><td></td><td>ug/l</td><td>0.50</td><td>1</td></t<>	cis-1,3-Dichloropropene	ND		ug/l	0.50	1
Chloromethane ND ug/l 2.5 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 Chloroethane ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.75 1 1,2-Dichloroethene 1.2 ug/l 0.50 1 1,2-Dichloroethene ND ug/l 2.5 1 1,2-Dichloroethene ND ug/l 2.5 1 1,3-Dichlorobenzene ND ug/l 2.5 1 1,4-Dichlorobenzene 13 ug/l 0.50 1 1,4-Dichloroethene 13 ug/l 5.0 1 Dichlorodifluoromethane ND ug/l 2.0 1 1,2-Dibromoethane ND ug/l 2.0 1 1,3-Dichloropropane ND ug/l 2.0 1	Bromoform	ND		ug/l	2.0	1
Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethane ND ug/l 1.0 1 1,1-Dichloroethane ND ug/l 0.50 1 1,1-Dichloroethane ND ug/l 0.75 1 trans-1,2-Dichloroethane 1.2 ug/l 0.50 1 1,2-Dichloroethane 1.2 ug/l 0.50 1 1,2-Dichlorobenzene ND ug/l 2.5 1 1,3-Dichlorobenzene ND ug/l 2.5 1 1,4-Dichlorobenzene 13 ug/l 0.50 1 1,4-Dichloroethane ND ug/l 2.5 1 1,4-Dichloroethane ND ug/l 0.50 1 1,2-Dibromoethane ND ug/l 2.0 1 1,2-Dibromoethane ND ug/l 2.0 1 1,3-Dichloropropane ND ug/l 2.5	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	1
ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 0.50 1 1,1-Dichloroethene ND ug/l 0.75 1 trans-1,2-Dichloroethene 1.2 ug/l 0.75 1 1,2-Dichloroethene 1.2 ug/l 0.50 1 1,2-Dichloroethene ND ug/l 2.5 1 1,2-Dichlorobenzene ND ug/l 2.5 1 1,3-Dichlorobenzene ND ug/l 2.5 1 1,4-Dichloroethene 13 ug/l 0.50 1 1,4-Dichloroethene 13 ug/l 0.50 1 1,2-Dichloroethene 13 ug/l 0.50 1 1,2-Dichloroethene ND ug/l 5.0 1 1,2-Dibromoethane ND ug/l 2.0 1 1,3-Dichloropropane ND ug/l 2.5 1	Chloromethane	ND		ug/l	2.5	1
1,1-Dichloroethene ND ug/l 0.50 1 trans-1,2-Dichloroethene ND ug/l 0.75 1 Trichloroethene 1.2 ug/l 0.50 1 1,2-Dichlorobenzene ND ug/l 2.5 1 1,3-Dichlorobenzene ND ug/l 2.5 1 1,4-Dichlorobenzene ND ug/l 0.50 1 1,2-Dichloroethene 13 ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 5.0 1 1,2-Dibromoethane ND ug/l 2.0 1 1,3-Dichloropropane ND ug/l 2.5 1	Vinyl chloride	ND		ug/l	1.0	1
trans-1,2-DichloroetheneNDug/l0.751Trichloroethene1.2ug/l0.5011,2-DichlorobenzeneNDug/l2.511,3-DichlorobenzeneNDug/l2.511,4-DichlorobenzeneNDug/l2.511,4-Dichloroethene13ug/l0.501DichlorodifluoromethaneNDug/l5.011,2-DibromoethaneNDug/l5.011,3-DichloropropaneNDug/l2.51	Chloroethane	ND		ug/l	1.0	1
Trichloroethene 1.2 ug/l 0.50 1 1,2-Dichlorobenzene ND ug/l 2.5 1 1,3-Dichlorobenzene ND ug/l 2.5 1 1,4-Dichlorobenzene ND ug/l 2.5 1 1,4-Dichlorobenzene ND ug/l 2.5 1 cis-1,2-Dichloroethene 13 ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 5.0 1 1,3-Dichloropropane ND ug/l 2.5 1	1,1-Dichloroethene	ND		ug/l	0.50	1
1,2-Dichlorobenzene ND ug/l 2.5 1 1,3-Dichlorobenzene ND ug/l 2.5 1 1,4-Dichlorobenzene ND ug/l 2.5 1 cis-1,2-Dichloroethene 13 ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 5.0 1 1,3-Dichloropropane ND ug/l 2.5 1	trans-1,2-Dichloroethene	ND		ug/l	0.75	1
ND ug/l 2.5 1 1,4-Dichlorobenzene ND ug/l 2.5 1 cis-1,2-Dichloroethene 13 ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 5.0 1 1,3-Dichloropropane ND ug/l 5.0 1	Trichloroethene	1.2		ug/l	0.50	1
ND ug/l 2.5 1 cis-1,2-Dichloroethene 13 ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 5.0 1 1,2-Dibromoethane ND ug/l 2.0 1 1,3-Dichloropropane ND ug/l 2.5 1	1,2-Dichlorobenzene	ND		ug/l	2.5	1
Line 13 ug/l 0.50 1 Dichlorodifluoromethane ND ug/l 5.0 1 1,2-Dibromoethane ND ug/l 2.0 1 1,3-Dichloropropane ND ug/l 2.5 1	1,3-Dichlorobenzene	ND		ug/l	2.5	1
DichlorodifluoromethaneNDug/l5.011,2-DibromoethaneNDug/l2.011,3-DichloropropaneNDug/l2.51	1,4-Dichlorobenzene	ND		ug/l	2.5	1
ND ug/l 2.0 1 1,3-Dichloropropane ND ug/l 2.5 1	cis-1,2-Dichloroethene	13		ug/l	0.50	1
1,3-Dichloropropane ND ug/l 2.5 1	Dichlorodifluoromethane	ND		ug/l	5.0	1
	1,2-Dibromoethane	ND		ug/l	2.0	1
1,1,1,2-Tetrachloroethane ND ug/l 0.50 1	1,3-Dichloropropane	ND		ug/l	2.5	1
	1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	1

03040912:40

Project Name:RAYTHEON WAYLANDProject Number:0095922

03040912:40

03/04/09

Lab Number: L0902526

Report Date:

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L0902526-01 DEP-19M-20090219-01 WAYLAND, MA				Date Collected: Date Received: Field Prep:		
Parameter		Result	Qualifier	Units	RDL	Dilution Factor	
MCP Volatile Organics	- Westborough Lab						
o-Chlorotoluene		ND		ug/l	2.5	1	
p-Chlorotoluene		ND		ug/l	2.5	1	
Hexachlorobutadiene		ND		ug/l	0.60	1	
1,2,4-Trichlorobenzene		ND		ug/l	2.5	1	

Surrogate	% Recovery	Acceptanc Qualifier Criteria	е
1,2-Dichloroethane-d4	105	70-130)
Toluene-d8	95	70-130)
4-Bromofluorobenzene	92	70-130)
Dibromofluoromethane	130	70-130)

Project Name: RAYTHEON WAYLAND

Project Number: 0095922

Report Date:

Lab Number:

L0902526

03/04/09

Method Blank Analysis Batch Quality Control

Analytical Method:	60,8260B
Analytical Date:	02/23/09 11:54
Analyst:	MM

arameter	Result	Qualifier		Units	RDL
CP Volatile Organics	- Westborough Lab for	sample(s):	01	Batch:	WG353738-3
Methylene chloride	ND			ug/l	5.0
1,1-Dichloroethane	ND			ug/l	0.75
Chloroform	ND			ug/l	0.75
Carbon tetrachloride	ND			ug/l	0.50
1,2-Dichloropropane	ND			ug/l	1.8
Dibromochloromethane	ND			ug/l	0.50
1,1,2-Trichloroethane	ND			ug/l	0.75
Tetrachloroethene	ND			ug/l	0.50
Chlorobenzene	ND			ug/l	0.50
1,2-Dichloroethane	ND			ug/l	0.50
1,1,1-Trichloroethane	ND			ug/l	0.50
Bromodichloromethane	ND			ug/l	0.50
trans-1,3-Dichloropropene	ND			ug/l	0.50
cis-1,3-Dichloropropene	ND			ug/l	0.50
Bromoform	ND			ug/l	2.0
1,1,2,2-Tetrachloroethane	ND			ug/l	0.50
Chloromethane	ND			ug/l	2.5
Vinyl chloride	ND			ug/l	1.0
Chloroethane	ND			ug/l	1.0
1,1-Dichloroethene	ND			ug/l	0.50
trans-1,2-Dichloroethene	ND			ug/l	0.75
Trichloroethene	ND			ug/l	0.50
1,2-Dichlorobenzene	ND			ug/l	2.5
1,3-Dichlorobenzene	ND			ug/l	2.5
1,4-Dichlorobenzene	ND			ug/l	2.5
cis-1,2-Dichloroethene	ND			ug/l	0.50
Dichlorodifluoromethane	ND			ug/l	5.0
1,2-Dibromoethane	ND			ug/l	2.0
1,3-Dichloropropane	ND			ug/l	2.5
1,1,1,2-Tetrachloroethane	ND			ug/l	0.50
o-Chlorotoluene	ND			ug/l	2.5

Project Name: RAYTHEON WAYLAND

Project Number: 0095922

5000

Report Date: 0

Lab Number:

L0902526

03/04/09

Method Blank Analysis Batch Quality Control

Analytical Method:	60,8260B
Analytical Date:	02/23/09 11:54
Analyst:	MM

Parameter	Result	Qualifier		Units	RDL
MCP Volatile Organics - Westborou	gh Lab for	sample(s):	01	Batch:	WG353738-3
p-Chlorotoluene	ND			ug/l	2.5
Hexachlorobutadiene	ND			ug/l	0.60
1,2,4-Trichlorobenzene	ND			ug/l	2.5

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	90		70-130	
Dibromofluoromethane	130		70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: RAYTHEON WAYLAND

Project Number: 0095922 Lab Number: L0902526 Report Date: 03/04/09

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
ICP Volatile Organics - Westborough La	ab Associated sample(s): 07	Batch: WG35	3738-1 WG353738-2		
Methylene chloride	76	82	70-130	8	25
1,1-Dichloroethane	96	100	70-130	4	25
Chloroform	84	90	70-130	7	25
Carbon tetrachloride	74	77	70-130	4	25
1,2-Dichloropropane	94	95	70-130	1	25
Dibromochloromethane	84	80	70-130	5	25
1,1,2-Trichloroethane	84	83	70-130	1	25
Tetrachloroethene	89	92	70-130	3	25
Chlorobenzene	90	92	70-130	2	25
1,2-Dichloroethane	92	91	70-130	1	25
1,1,1-Trichloroethane	89	92	70-130	3	25
Bromodichloromethane	88	88	70-130	0	25
trans-1,3-Dichloropropene	75	73	70-130	3	25
cis-1,3-Dichloropropene	80	78	70-130	3	25
Bromoform	88	86	70-130	2	50
1,1,2,2-Tetrachloroethane	88	85	70-130	3	25
Chloromethane	92	99	70-130	7	50
Vinyl chloride	82	90	70-130	9	25
Chloroethane	81	86	70-130	6	25
1,1-Dichloroethene	83	91	70-130	9	25
trans-1,2-Dichloroethene	100	103	70-130	3	25

Lab Control Sample Analysis Batch Quality Control

Project Name: RAYTHEON WAYLAND

Project Number: 0095922 Lab Number: L0902526 Report Date: 03/04/09

irameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
CP Volatile Organics - Westborough Lab	Associated sample(s): 01	Batch: WG353	738-1 WG353738-2		
Trichloroethene	90	91	70-130	1	25
1,2-Dichlorobenzene	91	91	70-130	0	25
1,3-Dichlorobenzene	93	94	70-130	1	25
1,4-Dichlorobenzene	92	94	70-130	2	25
cis-1,2-Dichloroethene	100	103	70-130	3	25
Dichlorodifluoromethane	60	65	70-130	8	50
1,2-Dibromoethane	84	82	70-130	2	25
1,3-Dichloropropane	82	79	70-130	4	25
1,1,1,2-Tetrachloroethane	90	90	70-130	0	25
o-Chlorotoluene	85	86	70-130	1	25
p-Chlorotoluene	87	88	70-130	1	25
Hexachlorobutadiene	87	94	70-130	8	25
1,2,4-Trichlorobenzene	86	85	70-130	1	25

Surrogate	LCS %Recovery Qualifier	LCSD %Recovery Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	94	98	70-130
Toluene-d8	95	96	70-130
4-Bromofluorobenzene	97	97	70-130
Dibromofluoromethane	113	117	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: RAY THEON WAYLAND	Project Name:	RAYTHEON WAYLAND
---------------------------------	---------------	------------------

Project Number: 0095922

 Lab Number:
 L0902526

 Report Date:
 03/04/09

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
MCP Volatile Organics - W Sample	Vestborough Lab As	sociated samp	ole(s): 01 Q0	C Batch ID: WG	3353738-4 WG	353738-5 QC	C Sample: L09	02178-07	Client ID: M
Methylene chloride	ND	1000	940	94	980	98	70-130	4	30
1,1-Dichloroethane	ND	1000	1000	105	1100	111	70-130	6	30
Chloroform	ND	1000	1000	105	1100	110	70-130	5	30
Carbon tetrachloride	ND	1000	960	96	1000	100	70-130	4	30
1,2-Dichloropropane	ND	1000	1100	113	1200	121	70-130	7	30
Dibromochloromethane	ND	1000	930	93	990	99	70-130	6	30
1,1,2-Trichloroethane	ND	1000	1000	101	1000	106	70-130	5	30
Tetrachloroethene	ND	1000	1000	101	1000	104	70-130	3	30
Chlorobenzene	ND	1000	1000	102	1100	107	70-130	5	30
1,2-Dichloroethane	ND	1000	1000	104	1100	110	70-130	6	30
1,1,1-Trichloroethane	ND	1000	990	99	1000	103	70-130	4	30
Bromodichloromethane	ND	1000	1000	106	1100	112	70-130	6	30
trans-1,3-Dichloropropene	ND	1000	900	90	930	93	70-130	3	30
cis-1,3-Dichloropropene	ND	1000	980	98	1000	104	70-130	6	30
Bromoform	ND	1000	820	82	880	88	70-130	7	30
1,1,2,2-Tetrachloroethane	ND	1000	940	95	980	98	70-130	3	30
Chloromethane	ND	1000	860	86	940	94	70-130	9	30
Vinyl chloride	ND	1000	880	89	910	91	70-130	2	30
Chloroethane	ND	1000	930	93	960	96	70-130	3	30
1,1-Dichloroethene	ND	1000	960	96	970	97	70-130	1	30
trans-1,2-Dichloroethene	ND	1000	1100	111	1200	116	70-130	4	30

Matrix Spike Analysis Batch Quality Control

Project Name:	RAYTHEON WAYLAND

Project Number: 0095922

 Lab Number:
 L0902526

 Report Date:
 03/04/09

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
MCP Volatile Organics - Sample					G353738-4 WG	353738-5 Q(C Sample: L09		
Trichloroethene	1500	1000	2700	125	2800	129	70-130	3	30
1,2-Dichlorobenzene	ND	1000	960	96	1000	101	70-130	5	30
1,3-Dichlorobenzene	ND	1000	970	97	1000	103	70-130	6	30
1,4-Dichlorobenzene	ND	1000	970	97	1000	103	70-130	6	30
cis-1,2-Dichloroethene	ND	1000	1200	120	1200	125	70-130	4	30
Dichlorodifluoromethane	ND	1000	790	79	770	77	70-130	3	30
1,2-Dibromoethane	ND	1000	1000	100	1100	107	70-130	7	30
1,3-Dichloropropane	ND	1000	970	97	1000	102	70-130	5	30
1,1,1,2-Tetrachloroethane	ND	1000	1000	100	1100	107	70-130	7	30
o-Chlorotoluene	ND	1000	870	87	920	93	70-130	7	30
p-Chlorotoluene	ND	1000	890	89	940	94	70-130	5	30
Hexachlorobutadiene	ND	1000	730	73	800	80	70-130	9	30
1,2,4-Trichlorobenzene	ND	1000	770	77	860	86	70-130	11	30

	MS	6	M	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	91		94		70-130	
4-Bromofluorobenzene	93		91		70-130	
Dibromofluoromethane	111		113		70-130	
Toluene-d8	93		92		70-130	

METALS

Project Name: Project Number:	RAYTHE 0095922	ON WAYLA	ND				Number: port Date:	-	_0902526)3/04/09	
•			SA	MPLE	RESULT	S				
Lab ID: Client ID: Sample Location: Matrix:	L090252 DEP-19N WAYLAN Water	Л-20090219				Dat Dat	e Collected e Received d Prep:	: (02/19/09 14: 02/20/09 Field Filtered	
Parameter	Result	Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Me	tals - West	borough La	b							
Iron, Dissolved	4.2		mg/l	0.05	1	02/21/09 13:30	02/23/09 14:3	5 EPA 3005 <i>A</i>	60,6010B	AI
Manganese, Dissolved	0.282		mg/l	0.010	1	02/21/09 13:30	02/23/09 14:3	5 EPA 3005A	60,6010B	AI

Project Name:RAYTHEON WAYLANDProject Number:0095922

 Lab Number:
 L0902526

 Report Date:
 03/04/09

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals	- Westborough Lab fo	r sample	(s): 01	Batch: W	G353579-1			
Iron, Dissolved	ND	mg/l	0.05	1	02/21/09 13:30	02/23/09 14:22	60,6010B	AI
Manganese, Dissolved	ND	mg/l	0.010	1	02/21/09 13:30	02/23/09 14:22	60,6010B	AI

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: RAYTHEON WAYLAND

Project Number: 0095922

 Lab Number:
 L0902526

 Report Date:
 03/04/09

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
MCP Dissolved Metals - Westborough La	ab Associated sample(s): 01	Batch: WG353	579-2 WG353579-3		
Iron, Dissolved	100	100	80-120	0	20
Manganese, Dissolved	98	98	80-120	0	20

INORGANICS & MISCELLANEOUS

Project Name:RAYTHEON WAYLANDProject Number:0095922

Lab Number: L0902526 Report Date: 03/04/09

SAMPLE RESULTS

Lab ID:	L0902526-01	Date Collected:	02/19/09 14:30
Client ID:	DEP-19M-20090219-01	Date Received:	02/20/09
Sample Location:	WAYLAND, MA	Field Prep:	Field Filtered
Matrix:	Water		

Parameter	Result	Qualifier Ur	its RDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
	Nesuit	Qualifier Of			•	, ,		Analyst
General Chemistry - We	estborough La	b						
Alkalinity, Total	51	mg Ca	CO3/L 2.0	1	-	02/23/09 11:18	30,2320B	SD
Chloride	9.5	m	g/l 1.0	1	-	02/24/09 18:49	1,9251	DD
Nitrogen, Nitrate	0.14	m	g/l 0.10	1	-	02/20/09 22:45	30,4500NO3-F	DD
Phosphorus, Total	0.018	m	g/l 0.010) 1	-	02/25/09 14:10	30,4500P-E	ST
Sulfate	70	m	g/l 20	2	02/24/09 10:05	02/24/09 10:05	1,9038	SD
Total Organic Carbon	1.2	m	g/l 0.50	1	-	02/26/09 16:19	1,9060	DW

 Lab Number:
 L0902526

 Report Date:
 03/04/09

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	alifier Unit	s RDL	Dilution Factor		Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab f	or sample(s)	: 01 Batch	: WG353	523-2			
Nitrogen, Nitrate	ND	m	g/l 0.10	1	-	02/20/09 23:22	30,4500NO3-F	DD
General Chemistry -	Westborough Lab f	or sample(s)	: 01 Batch	: WG353	670-1			
Alkalinity, Total	ND	mg Ca	aCO3/L 2.0	1	-	02/23/09 11:18	30,2320B	SD
General Chemistry -	Westborough Lab f	or sample(s)	: 01 Batch	: WG353	778-2			
Chloride	ND	m	g/l 1.0	1	-	02/24/09 18:46	1,9251	DD
General Chemistry -	Westborough Lab f	or sample(s)	: 01 Batch	: WG353	849-1			
Phosphorus, Total	ND	m	g/l 0.010) 1	-	02/25/09 14:05	30,4500P-E	ST
General Chemistry -	Westborough Lab f	or sample(s)	: 01 Batch	: WG353	977-1			
Sulfate	ND	m	g/l 10	1	02/24/09 10:05	02/24/09 10:05	1,9038	SD
General Chemistry -	Westborough Lab f	or sample(s)	: 01 Batch	: WG354	112-1			
Total Organic Carbon	ND	m	ıg/l 0.50	1	-	02/26/09 16:19	1,9060	DW

Lab Control Sample Analysis Batch Quality Control

Project Name:	RAYTHEON WAYLAND
---------------	------------------

Project Number: 0095922

 Lab Number:
 L0902526

 Report Date:
 03/04/09

Parameter	LCS %Recovery			LCSD Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01	Batch:	WG353523-1			
Nitrogen, Nitrate	98			-	90-110	-	
General Chemistry - Westborough Lab	Associated sample(s):	01	Batch:	WG353670-2			
Alkalinity, Total	103			-	80-115	-	4
General Chemistry - Westborough Lab	Associated sample(s):	01	Batch:	WG353778-1			
Chloride	100			-	90-110	-	
General Chemistry - Westborough Lab	Associated sample(s):	01	Batch:	WG353849-2			
Phosphorus, Total	105			-	85-115	-	
General Chemistry - Westborough Lab	Associated sample(s):	01	Batch:	WG353977-2			
Sulfate	110			-	90-115	-	
General Chemistry - Westborough Lab	Associated sample(s):	01	Batch:	WG354112-2			
Total Organic Carbon	100			-	90-110	-	

Matrix Spike Analysis Batch Quality Control

Project Name: RAYTHEON WAYLAND

Project Number: 0095922

 Lab Number:
 L0902526

 Report Date:
 03/04/09

Parameter	Native Sample	MS Added	MS Found %	MS Recovery	MSD Fou	MSD nd %Recovery	Recovery Limits	RPD	RPD Limits
General Chemistry -	Westborough Lab Associ			n ID: WG353	523-3 Q	C Sample: L0902	178-02 Client	ID: MS	
Nitrogen, Nitrate	ND	4	4.1	102	-	-	83-120	-	6
General Chemistry -	Westborough Lab Associ	ated sample(s):	01 QC Batch	n ID: WG353	670-3 Q	C Sample: L0902	178-16 Client	ID: MS	Sample
Alkalinity, Total	59	100	150	92	-	-	86-116	-	4
General Chemistry -	Westborough Lab Associ	ated sample(s):	01 QC Batch	n ID: WG353	778-3 Q	C Sample: L0902	181-02 Client	ID: MS	Sample
Chloride	15	20	35	100	-	-	58-140	-	7
General Chemistry -	Westborough Lab Associ	ated sample(s):	01 QC Batch	n ID: WG353	849-3 Q	C Sample: L0902	178-10 Client	ID: MS	Sample
Phosphorus, Total	0.054	0.5	0.569	103	-	-	80-120	-	20
General Chemistry -	Westborough Lab Associ	ated sample(s):	01 QC Batch	n ID: WG353	977-3 Q	C Sample: L0902	178-08 Client	ID: MS	Sample
Sulfate	15	20	34	95	-	-	55-147	-	14
General Chemistry -	Westborough Lab Associ	ated sample(s):	01 QC Batch	n ID: WG354	112-3 Q	C Sample: L0902	178-03 Client	ID: MS	Sample
Total Organic Carbon	1.4	4	5.1	93	-		80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: RAYTHEON WAYLAND Project Number: 0095922

Lab Number: Report Date:

L0902526 03/04/09

Parameter	Nativo	e Sample	Duplicate Sar	mple Units	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 0	01 QC Batch ID:	WG353523-4	QC Sample: L0902178-04	Client ID:	DUP Sample
Nitrogen, Nitrate		0.11	ND	mg/l	NC	6
General Chemistry - Westborough Lab	Associated sample(s): 0	01 QC Batch ID:	WG353670-4	QC Sample: L0902178-16	6 Client ID:	DUP Sample
Alkalinity, Total		59	58	mg CaCO3/L	2	4
General Chemistry - Westborough Lab	Associated sample(s): 0	01 QC Batch ID:	WG353778-4	QC Sample: L0902178-04	Client ID:	DUP Sample
Chloride		9.3	9.1	mg/l	2	7
General Chemistry - Westborough Lab	Associated sample(s): 0	01 QC Batch ID:	WG353849-4	QC Sample: L0902178-10) Client ID:	DUP Sample
Phosphorus, Total	(0.054	0.054	mg/l	0	20
General Chemistry - Westborough Lab	Associated sample(s): 0	01 QC Batch ID:	WG353977-4	QC Sample: L0902178-08	3 Client ID:	DUP Sample
Sulfate		15	15	mg/l	0	14
General Chemistry - Westborough Lab	Associated sample(s): 0	01 QC Batch ID:	WG354112-4	QC Sample: L0902178-07	Client ID:	DUP Sample
Total Organic Carbon		1.2	1.2	mg/l	0	20

Project Name: RAYTHEON WAYLAND

Project Number: 0095922

Lab Number: L0902526 Report Date: 03/04/09

GLOSSARY

Acronyms

- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD- Laboratory Control Sample Duplicate: Refer to LCS.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NI Not Ignitable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- ND Not detected at the reported detection limit for the sample.
- RDL Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

The following data qualifiers have been identified for use under the CT DEP Reasonable Confidence Protocols.

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- J Estimated value. The analyte was tentatively identified; the quantitation is an estimation. (Tentatively identified compounds only.)

Standard Qualifiers

H - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

 Lab Number:
 L0902526

 Report Date:
 03/04/09

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IIIA, 1997.
- 30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.
- 60 Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). May 2004.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised February 18, 2009 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. Organic Parameters: Haloacetic Acids, Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP), Ethylene Dibromide (EDB).) Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Calcium Hardness, Silica, Sulfate, Sulfide, Ammonia, Kieldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics.) Solid Waste/Soil (Inorganic Parameters: Lead in Paint, pH, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), Reactivity. Organic Parameters: PCBs,

Organochlorine Pesticides, Technical Chlordane, Toxaphene, Extractable Petroleum Hydrocarbons (ETPH), Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Volatile Organics, Acid Extractables (Phenols), 3.3'-Dichlorobenzidine, Phthalates, Nitrosamines, Nitroaromatics & Cyclic Ketones, PAHs, Haloethers, Chlorinated Hydrocarbons.)

Maine Department of Human Services Certificate/Lab ID: MA0086.

Drinking Water (<u>Inorganic Parameters</u>: SM9215B, 9221E, 9222B, 9222D, 9223B, EPA 150.1, 180.1, 300.0, 353.2, SM2130B, 2320B, 4500CI-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B,4500NO3-F, EPA 200.7, EPA 200.8, 245.1. <u>Organic Parameters</u>: 504.1, 524.2, SM 6251B.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 350.1, 351.1, 353.2, 410.4, 420.1, Lachat 10-107-06-1-B, SM2320B, 2340B, 2510B, 2540C, 2540D, 426C, 4500CI-D, 4500CI-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-B, 4500Norg-C, 4500NH3-B, 4500NH3-G, 4500NH3-H, 4500NO3-F, 4500P-B.5, 4500P-E, 5210B, 5220D, 5310C, EPA 200.7, 200.8, 245.1. Organic Parameters: 608, 624.)

Massachusetts Department of Environmental Protection <u>Certificate/Lab ID</u>: M-MA086. Drinking Water

Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl) (EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Nitrite-N, Fluoride, Sulfate) 353.2 for: Nitrate-N, Nitrite-N; SM4500NO3-F, 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, 2320B, SM2540C, EPA 150.1, SM4500H-B. Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics)

(504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), SM6251B, 314.0.

Non-Potable Water

Inorganic Parameters:, (EPA 200.8 for: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn) (EPA 200.7 for: Al,Sb,As,Be,Cd,Cr,Co,Cu,Fe,Pb,Mn,Mo,Ni,Se,Ag,Sr,Tl,Ti,V,Zn,Ca,Mg,Na,K) 245.1, SM4500H,B, EPA 120.1, SM2510B, 2540C, 2540B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Nitrate-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-B,C-Titr, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CN-CE, 2540D, 4500CL-D, EPA 1664, SM14 510AC, EPA 420.1 <u>Organic Parameters</u>: (EPA 624 for Volatile Halocarbons, Volatile Aromatics) (608 for: Chlordane, Aldrin, Dieldrin, DDD, DDE, DDT, Heptachlor, Heptachlor Epoxide, PCB-Water) 600/4-81-045-PCB-Oil

Massachusetts Department of Environmental Protection <u>Certificate/Lab ID</u>: M-MA086. Drinking Water

Microbiology Parameters: SM9215B; MF-SM9222B; ENZ. SUB. SM9223; EC-SM9221E; MF-SM9222D; ENZ. SUB. SM9223;

New Hampshire Department of Environmental Services Certificate/Lab ID: 200307.

Drinking Water (Inorganic Parameters: SM6215B, 9222B, 9223B Colilert, EPA 200.7, 200.8, 245.2, 110.2, 120.1, 150.1, 300.0, 325.2, 314.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 331.0. <u>Organic Parameters</u>: 504.1, 524.2, SM6251B.)

Non-Potable Water (<u>Inorganic Parameters</u>: SM9222D, 9221B, 9222B, 9221E-EC, EPA 200.7, 200.8, 245.1, 245.2, SW-846 6010B, 6020, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 150.1, 300.0, 305.1, 310.1, 325.2, 340.2, 350.1, 350.2, 351.1, 353.2, 354.1, 365.2, 375.4, 376.2, 405.1, 415.1, 420.1, 425.1, 1664A, SW-846 9010, 9030, 9040B, EPA 160.1, 160.2, 160.3, SM426C, SM2310B, 2540B, 2540D, 4500H+B, 4500NH3-H, 4500NH3-E, 4500NO2-B, 4500P-E, 4500-S2-D, 5210B, 2320B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-117-07-1-B, LACHAT 10-107-06-1-B, LACHAT 10-107-04-1-C, LACHAT 10-107-04-1-J, LACHAT 10-117-07-1-A, SM4500CL-E, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D. <u>Organic Parameters</u>: SW-846 3005A, 3015A, 3510C, 5030B, 8021B, 8260B, 8270C, 8330, EPA 624, 625, 608, SW-846 8082, 8081A.)

Solid & Chemical Materials (<u>Inorganic Parameters</u>: SW-846 6010B, 7196A, 7471A, 7.3.3.2, 7.3.4.2, 1010, 1030, 9010, 9012A, 9014, 9030B, 9040, 9045C, 9050C, 1311, 3005A, 3050B, 3051A. <u>Organic Parameters</u>: SW-846 3540C, 3545, 3580A, 5030B, 5035, 8021B, 8260B, 8270C, 8330, 8151A, 8082, 8081A.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935.

Drinking Water (<u>Inorganic Parameters</u>: SM9222B, 9221E, 9223B, 9215B, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 2540C, 2320B, 314.0, 331.0, 110.2, SM2120B, 2510B, 5310C, EPA 150.1, SM4500H-B, EPA 200.8, 245.2. <u>Organic Parameters</u>: 504.1, SM6251B, 524.2.)

Non-Potable Water (Inorganic Parameters: SM5210B, EPA 410.1, SM5220D, 4500CI-D, EPA 300.0, SM2120B, SM4500F-BC, EPA 200.7, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, SM15 426C, SM9221CE, 9222D, 9221B, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, EPA 350.2/.1, SM5210B, SW-846 3015, 6020, 7470A, 5540C, 4500H-B, EPA 200.8, SM3500Cr-D, EPA 245.1, 245.2, SW-846 9040B, 3005A, EPA 6010B, 7196A, SW-846 9010B, 9030B. <u>Organic Parameters</u>: SW-846 8260B, 8270C, 3510C, EPA 608, 624, 625, SW-846 5030B, 8021B, 8081A, 8082, 8151A, 8330.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 9040B, 3005A, 6010B, 7196A, 5030B, 9010B, 9030B, 1030, 1311, 3050B, 3051, 7471A, 9014, 9012A, 9045C, 9050A, 9065. <u>Organic Parameters</u>: SW-846 8021B, 8081A, 8082, 8151A, 8330, 8260B, 8270C, 1311, 3540C, 3545, 3550B, 3580A, 5035L, 5035H.)

New York Department of Health Certificate/Lab ID: 11148.

Drinking Water (<u>Inorganic Parameters</u>: SM9223B, 9222B, 8215B, EPA 200.8, 200.7, 245.2, SM5310C, EPA 314.0, 331.0, SM2320B, EPA 300.0, 325.2, 110.2, SM2120B, 4500CN-E, 4500F-C, EPA 150.1, SM4500H-B, 4500NO3-F, 2540C, EPA 120.1, SM 2510B. <u>Organic Parameters</u>: EPA 524.2, 504.1, SM6251B.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, EPA 405.1, SM5210B, EPA 410.4, SM5220D, EPA 305.1, SM2310B-4a, EPA 310.1, SM2320B, EPA 200.7, 300.0, 325.2, LACHAT 10-117-07-1A or B, SM4500CI-E, EPA 340.2, SM4500F-C, EPA 375.4, SM15 426C, EPA 350.1, 350.2, LACHAT 10-107-06-1-B, SM4500NH3-H, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, LACHAT 10-107-041-C, SM4500-NO30F, EPA 354.1, SM4500-NO2-B, EPA 365.2, SM4500P-E, EPA 160.3, SM2540B, EPA 160.1, SM2540C, EPA 160.2, SM2540D, EPA 200.8, EPA 6010B, 6020, EPA 7196A, S\M3500Cr-D, EPA 245.1, 245.2, 7470A, 110.2, SM2120B, 335.2, LACHAT 10-204-00-1-A, EPA 150.1, 9040B, SM4500-HB, EPA 1664A, EPA 415.1, SM5310C, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, EPA 376.2, SM4500S-D, EPA 425.1, SM5540C, EPA 3005A, 3015. Organic Parameters: EPA 624, 8260B, 8270C, 625, 608, 8081A, 8151A, 8330, 8082, 8021B, EPA 3510C, 5030B, 9010B, 9030B.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 9040B, 9045C, 1010, 1030, SW-846 Ch 7 Sec 7.3, EPA 6010B, 7196A, 7471A, 9012A, 9014, 9040B, 9045C, 9065, 9050, EPA 1311, 3005A, 3050B, 3051, 9010B, 9030B. <u>Organic Parameters</u>: EPA 8260B, 8270C, 8081A, 8151A, 8330, 8082, 8021B, 3540C, 3545, 3580, 5030B, 5035.)

Analytical Services Protocol: CLP Volatile Organics, CLP Inorganics, CLP PCB/Pesticides.

Rhode Island Department of Health <u>Certificate/Lab ID</u>: LAO00065. Refer to MA-DEP Certificate for Potable and Non-Potable Water. Refer to NY-DOH Certificate for Potable and Non-Potable Water.

Pennsylvania Department of Environmental Protection Certificate/Lab ID : 68-03671. Registered Laboratory.

F		PAGE 1 OF 1	Date Rec'd in Lab: Report Inform	Date Rec'd in Lab: 02/20/09 Report Information Data Deliverables	Deliverables MAIL	ALPHA Job #: L0902526 Eilling Information	0902526 fon #0 P0 #
FAX:508-998-9193 FAX: 508-822-9300 TEL: 603-232-8247 FAX:508-998-9193 FAX: 508-822-9308 FAX: 603-628-2241	Project Name: Raytheon Wayland	_	Regulatory R	Requirement	Add'l Deliverables		
Client Information	Project Location: Wayland, Ma		State/Fed Program	iram		Criteria	
Client: ERM-MA	Project #: 0095922	-					
Address:	Project Manager: Jason Flattery				Are MCP Analytic	Are MCP Analytical Mathods Required?	FIDENCE
	ALPHA Quote #:		U Yes	No No	Are CT RCP (Rea	Are CT RCP (Reasonable Confidence Protocols) Required?	tocols) Requir
Phone:	Turn-Around Time		ANALYSIS		-		
Fax:			_				SAMPLE HANDLING
Email:							Done
These samples have been Previously analyzed by Alpha	- Due Date: 03/04/09 Time:						Lab to do
Other Project Specific Requirements/Comments/Detection Limits:							Preservation
Relog of L0902178-01							(Please specify below)
			SO4	+Mn	y		
(L±b Use Only) Sample ID	Collection	۔ در	60-(8 ,NO3,	ss. Fe DC PHOS	kalinit		Sample
	Date Time M	Matrix Initials	CI,I	то	Alk		Sample Specific Comments
2526-01 DEP-19M-20090219-01	02/19/09 14:30 W	Water		\boxtimes			
PLEASE ANSWER QUESTIONS ABOVE!		Container Type		-	•	-	
		Preservative	-	-	•) 1 4	Please print clearly, regulary and completely. Samples can
MA MCP or CT BCB3	Relinquished By:	1 By:	Date/Time	- Will	Repairved By	2/2/KG	
				- LAIN	Chrone and the second s	- 1 alerto	submitted are subject to

AVESTIONS ABOVE MUST BE ANSWERED FOR PRESUMPTIVE CERTAINTY IS YOUR PROJECT MCP ? MCP ? MCP ?		02:11 Palpip 10-91 209002- M. P VEV - VEV - VEV		13 have been previously analyzed by Alpha 15 Specific Requirements/Comme	Phone: (レミア) レギレー アをひる Turn-Around Time Fax: (レミア) スリア・レリンフ ロシン ロン ロン Turn-Around Time	letin them Boston, MA ALPHA QUOR #		_ Ģ
Container Type V Preservative & Date/Time 2/20 /09 11:78		GW EN	Sample Sample Matrix Initials	7 Time:	RUSH (only confirmed if pre-supervised!)	Jason Flatteny	hen Wayland Yand, MA	PAGE OF 3
$P \ P \ V \ P \ P \ A \ C \ D \ D \ A \ A \ C \ D \ D \ A \ A \ A \ A \ A \ A \ A \ A$			CALA HEAL	218 ride, NO3, SO4 GETMA QC QC QC QC QC QC QC QC QC QC QC QC QC	Are MCP Analytical Methods Required? I Yes INo Are MCP Analytical Methods Required? I Yes INo Are Drinking Water Samples Submitted? Wress INo Have you met minimum field QC requirements?	State/Fed Program Criteria MA NCA GMCA.	□ FAX TREEMAIL □ FAX TREEMAIL □ FAX BLAdd1 Deliverables Regulatory Requirements/Report Limits	
Please print clearly, legibly and completely. Samples can not be logged in and turnaround time dock will not start until any antibiguities are resolved. All samples submitted are subject to Alpira's Payment Terms.		only able to could	(Passe specify becw) Sample Specific Comments	SAMPLE HANDLING Filtration GOOne D Not needed D Lab to do Preservation	videal Methods Required? /ater Samples Submitted? minimum field QC requirements?		Same as Client Info PO #:	